The Relationship between the Infinite Eigenvalue Assignment for Singular Systems and the Solvability of Polynomial Matrix Equations

نویسنده

  • TADEUSZ KACZOREK
چکیده

Two related problems, namely the problem of the infinite eigenvalue assignment and that of the solvability of polynomial matrix equations are considered. Necessary and sufficient conditions for the existence of solutions to both the problems are established. The relationships between the problems are discussed and some applications from the field of the perfect observer design for singular linear systems are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvability of infinite system of nonlinear singular integral equations in the C(Itimes‎ I‎, ‎c) space and modified semi-analytic method to find a closed-form of solution

‎In this article‎, ‎we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I‎, ‎c)$ by applying measure of noncompactness‎ and Meir-Keeler condensing operators‎. By presenting an example, we have illustrated our results‎. ‎For validity of the results we introduce a modified semi-analytic method in the case of tw...

متن کامل

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations

  In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...

متن کامل

A STRONG COMPUTATIONAL METHOD FOR SOLVING OF SYSTEM OF INFINITE BOUNDARY INTEGRO-DIFFERENTIAL EQUATIONS

The introduced method in this study consists of reducing a system of infinite boundary integro-differential equations (IBI-DE) into a system of al- gebraic equations, by expanding the unknown functions, as a series in terms of Laguerre polynomials with unknown coefficients. Properties of these polynomials and operational matrix of integration are rst presented. Finally, two examples illustra...

متن کامل

The eect of indicial equations in solving inconsistent singular linear system of equations

The index of matrix A in Cn.n is equivalent to the dimension of largest Jor-dan block corresponding to the zero eigenvalue of A. In this paper, indicialequations and normal equations for solving inconsistent singular linear systemof equations are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003